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angular grid. The shallow water equations on the sphere, a two-dimensional surface in R?,
are locally represented in terms of spherical triangular coordinates, the appropriate local
coordinate mappings on triangles. On every triangular grid element, this leads to a two-
dimensional representation of tangential momentum and therefore only two discrete
momentum equations.

Ilfienyi?e():lizﬁems The discontinuous Galerkin method consists of an integral formulation which requires
Finite volumes both area (elements) and line (element faces) integrals. Here, we use a Rusanov numerical
Shallow water equations flux to resolve the discontinuous fluxes at the element faces. A strong stability-preserving
Triangular grid third-order Runge-Kutta method is applied for the time discretization. The polynomial space
Spherical geometry of order k on each curved triangle of the grid is characterized by a Lagrange basis and requires
Surface high-order quadature rules for the integration over elements and element faces. For the pre-

sented method no mass matrix inversion is necessary, except in a preprocessing step.

The validation of the atmospheric model has been done considering standard tests from
Williamson et al. [D.L. Williamson, ].B. Drake, ].J. Hack, R. Jakob, P.N. Swarztrauber, A standard
test set for numerical approximations to the shallow water equations in spherical geometry,
J. Comput. Phys. 102 (1992)211-224], unsteady analytical solutions of the nonlinear shallow
water equations and a barotropic instability caused by an initial perturbation of a jet stream.
A convergence rate of O(Ax**!) was observed in the model experiments. Furthermore, a
numerical experiment is presented, for which the third-order time-integration method lim-
its the model error. Thus, the time step At is restricted by both the CFL-condition and accuracy
demands. Conservation of mass was shown up to machine precision and energy conservation
converges for both increasing grid resolution and increasing polynomial order k.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Modeling atmospheric flows for climate simulations as well as for weather prediction is a complex problem, due to
the nonlinear structure of the dynamical and physical phenomena on widely varying spatial and temporal scales and their
multi-scale interaction processes. Depending on the complexity of an atmospheric model the governing equations are the
fundamental atmospheric conservation laws for mass, momentum, and energy or appropriate simplifications of them. If
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the regarded equation set is a hyperbolic system, energetic shocks can develop theoretically. Although this is usually not the
case in atmospheric models, the discretization should represent regions of scale collapse and breaking waves generating dis-
continuities in the velocity field; the discrete conservation properties of the discontinuous Galerkin (DG) method are appro-
priate for this task.

The shallow water equations (SWE), valid for a homogeneous atmosphere with small vertical velocities and horizontal
velocities independent in the vertical direction, constitute a hyperbolic system of conservation laws. It is one of the simplest
nonlinear hyperbolic systems, covering important planetary atmospheric features, like the Rossby wave formation.

For the spherical SWE the spatial domain is the sphere S, a two-dimensional surface in R>. In a regional or mesoscale SWE
model the momentum is a two-dimensional vector. In contrast, the Cartesian formulation of the spherical case in [43,8,44]
represents the tangential momentum of the flow as a three-dimensional vector and includes a Lagrangian multiplier to con-
strain the momentum to be tangential. Applying this form to a numerical model usually leads to three momentum equations
and requires a correction step to satisfy the constraint discretely, see e.g. [17]. Models in standard spherical coordinates sat-
isfy a two-dimensional momentum representation but have to pay additional attention to phenomena near the poles due to
singularities of the coordinate mapping, see e.g. [27].

The idea to avoid the drawbacks of the Cartesian and the spherical coordinates formulation is to represent the spherical
SWE in terms of local coordinate transformations. On a cubed-sphere grid, a spherical quadrilateral grid, the following works
[37,33,31,45,35] achieved a two-dimensional momentum representation avoiding any pole problem. Our new model
achieves the same flexibility but on unstructured triangular grids using spherical triangular coordinates.

Numerous models on spherical triangles have been proposed in the last three decades. For example, the early work by
Sadourny at al. [38] and Williamson [49] introduced to the atmospheric community the use of triangular grids based on
the icosahedron to develop the underlying grid for the construction of finite difference operators. Work on triangular grids
based on the icosahedron for discretizing the sphere lay dormant for another 15 years until the work was resumed by Baum-
gardner and Frederickson [1]. Ten years later work on these grids was resurrected by Heikes and Randall [20] and followed
by Giraldo [13], Thuburn [47], Stuhne and Peltier [42], Tomita et al. [48], and Heinze and Hense [21]. All of these models rely
directly on either the triangular grid being derived from the icosahedron or on a linear representation of the discrete oper-
ators; this way there is an easily computable dual grid which is based on hexagons (icosahedron) or the operators can be
constructed using the vertices of an element which are co-planar (linear representation). However, for high-order operators
on general triangular grids, one needs to construct the discrete spatial operators directly on the curved manifold which then
requires the derivation of the Christoffel symbols from differential geometry (see [35] for a summary of the use of differential
geometry for atmospheric flow).

One of the contributions of this manuscript is to show how to use these ideas for constructing high-order spatial oper-
ators on general triangulations on the sphere. While these ideas have been used extensively for quadrilateral-based grids,
they have not been used at all (or not often); to our knowledge, there are currently no existing models on the sphere which
use high-order discretizations on the triangle with the exception being those developed by the present authors. Lduter et al.
[25] developed a shallow water model on the sphere using second order finite elements on dynamically adaptive triangular
grids, while Giraldo and Warburton [17] and Giraldo [15] developed shallow water models on the sphere using up to 15 or-
der spectral element and discontinuous Galerkin operators on unstructured triangular grids. Extracting the highlights of
these three separate works results in a robust, accurate, and efficient model. However, in order to achieve this aim requires
writing the equations directly on the parametric space defined by the curved spherical triangles. We consider the spherical
SWE in flux form on the surface S using coordinate independent differential operators on S known from differential geom-
etry. By using an appropriate local coordinate mapping 7y, on the curved spherical triangle E we can then obtain a two-
dimensional representation of the tangential momentum vectors. This then allows us full grid independence such that
our discrete operators can be constructed to arbitrarily high-order while doing so on generalized unstructured triangulations
on the sphere (or any other curved manifold, for that matter). This approach allows us the same flexibility enjoyed with the
Cartesian methods discussed previously while now only requiring tangential momentum equations.

Numerous numerical methods have been proposed for next generation global atmospheric models including finite vol-
umes [27,34], spectral elements [45,11,9,17], and DG [16,30,15] methods. We have selected the DG method for our model
because it allows us to achieve high-order accuracy as in spectral elements while conserving all quantities both locally
and globally as in finite volumes, see the review in [5]. Furthermore, our use of unstructured triangular grids allows for much
flexibility in future work on adaptivity.

The organization of this article is as follows. In Section 2 the governing spherical SWE are given using surface differential
operators. Section 3 describes the numerical discretization by a Runge-Kutta discontinuous Galerkin method applying
spherical triangular coordinates. In Section 4 the atmospheric model based on the discretization is validated in terms of stan-
dard tests from Williamson et al. [50], steady-state and unsteady analytical solutions and a barotropic instability generated
by a small initial perturbation.

2. Spherical shallow water equations

The spherical SWE are a system of conservation laws for the geopotential layer depth (mass) and the flow momentum.
Because the integration domain of the SWE is the sphere, a two-dimensional surface in R*, the system can be formulated
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in the surrounding Cartesian space R?, see Coté [8]. Coté’s formulation is equivalent to a conservative form of the SWE on the
surface S, which is the formulation used further below.

Let us consider the sphere S = {x ¢ R?||x| =a} with the Earth’s radius a =6.371 x 10° m, the geopotential layer
depth @:S x R5g — R, the tangential momentum field U : S x R-¢ — R® with U(x,t) € T,(S) and the conserved variable
q = (¢,U"". Momentum and velocity fulfill the relation U = ®u. Then, the SWE in conservative form on the surface S
are

0rq + divsf(q) = F(x,q) in S x Rso. (1)

Thereby, the flux function and the right hand side are

_ (fe@) _ _UsU @
f@= (). fo@=U. flw =50+ 1,
0 U?
F(X./q)z <Fu(x,q)>’ Fu(X,q)Z*fckXU*@vS(pB*dTak

x-e3
|

with the Earth’s angular velocity Q = 7.292 x 107> s~!, the space dependent Coriolis parameter f,(x) = 2Q o the geopoten-
tial bottom height @3 : S — R. Further, the normal unit vector k(x) = o outward on S, the identity mapping Ids in R* and the
Cartesian basis (e;);_, 5 of R® are defined. See Appendix for the definition of the differential operators on S.

As a consequence of (1), mass is locally and globally conserved, energy is globally conserved and for Q = @3 =0
angular momentum is globally conserved, see [29]. Three prognostic equations for the momentum ¢u appear in (1),
whereas the momentum is forced to be tangential on S by the Lagrangian multiplier fg—zk. Although this pseudo force
has no physical origin, in the spherical system it is a perturbation for the global conservation of momentum. Of course with-
out that pseudo force (and Q = @ = 0), like for the two-dimensional shallow water equations, conservation of momentum is
obtained.

3. Discontinuous Galerkin method

The DG method is applied to the conservative form (1) of the SWE on the surface S. On each curved triangle (element) E of
the grid tesselation spherical triangular coordinates are introduced, which are local coordinate mappings y; on E. The poly-
nomial representation on each grid element uses high-order Lagrange polynomials based on specially chosen Lagrange
points (see Section 3.2). This approach leads to the local representation of the tangential momentum fields by two compo-
nents only. An integral form of (1) leads to the space-discrete DG method including a Rusanov numerical flux. For this meth-
od high-order quadrature rules are applied and, except in a preprocessing step, no mass matrix inversion has to be evaluated.
Finally the semi-discrete problem is solved by a strong stability-preserving explicit Runge-Kutta (RK) method. Although
slope limiting steps are needed to prove convergence in the one-dimensional scalar case (see [5]) the presented RK-DG
method avoids any kind of limiting or explicit smoothing such as diffusion and filter operators. Nevertheless for the per-
formed numerical experiments, this method gives stable results (see Section 4).

3.1. Spherical triangular coordinates

Let E C S be a relative open spherical triangle bounded by great circles and defined by its vertices xg,x;,X> € S. Then we
define for E the local coordinate mapping 7y, or the spherical triangular coordinates, by
X(¥)

ve: D — E, p:(y) =a—2 . 2

/E yE( ) |Xp(y)| ( )
Here, D = {y € R*|0 < ¥,,¥>; )1 + ¥, < 1} is a two-dimensional reference triangle, and x,(y) = Xo + ¥, (X1 — Xo) 4 ¥ (X2 — Xo) an
auxiliary planar mapping. Following the notation in Appendix, a basis of T,(S), Gram’s determinant and the Christoffel sym-
bols are given withi,j .k =1,2

b= 2 ((xi—xo)—(x,-—xo) Xp x"),

%] [Xp] [Xp]

i X i i
g= (b1 xby)’, Tj=—3((% = X0)0 + (X — X0)3))-
P

3.2. Discrete function space

Let 7 = {E c S|E spherical triangle, E open in S} be a finite conformal triangulation of the sphere - that is, a triangular
grid without hanging nodes. For the presented model, 7 is constructed by the grid generator AMATOS, see [2]. Dependent
on the grid level I, an icosahedral coarse grid 7 is refined in I steps, in which every triangle of 7 is divided by bisection.
This leads to an unstructured spherical triangulation 7 with reasonably uniform grid resolution, see Fig. 1.
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Fig. 1. Section 3.2, uniform grid, grid resolution 2058 km (left), 1041 km (middle), 522 km (right).

The polynomial space of the polynomials of degree at most k > 0 on every element E € 7 is defined by

PY(E) = {¢ : E— R|g o 5 € P(D)}, with

PY(D) = span{p; : D — RIi,j=0,....ki+j <k py(y1.y2) = yih}
and v, is the spherical triangular coordinate mapping (2). Thus, the coordinate mapping y; defines both the curved geometry
of E and the polynomial space on E. This technique for curved elements is similar to the definition of isoparametric finite
elements, see [3], but with an analytically non-polynomial mapping 7.

Every polynomial p € P“(E) is represented by a multivariate Lagrange basis (¢;),_, _y, of P(E), with Nj = *1K2) ass0-
ciated with the Lagrange points (x;);_; _ y,, thatisforx € E
Ny
p(x) = @;(x)p(x). 3)

i-1
Thereby, (x;)._; _ y, aswellas (@), _y, aredefined by @; = @io7g' and x; = ¢ (%). (Pi)i_;_ , is the multivariate Lagrange
basis of P¥(D) associated with the electrostatic points (Xi)i1, .. v, in D derived from the electrostatics principle. These points
have the smallest Lebesgue constants for k < 9 and are the result of numerical studies minimizing a certain energy function,
see [22]. Another appropriate choice would have been the Fekete points which have only slightly larger Lebesgue constants
for k < 9 but smaller Lebesgue constants for k > 9, see [46]. Here, we chose electrostatic points because all model experi-

ments in Section 4 are performed with polynomial order k < 9.
Based on the polynomial space P¥(E), the discrete discontinuous function spaces for the scalar fields and tangential vector

fields are defined by
Vo ={®cL*S)|VEeT: | € P"E)},
Vy={UeL*(S,R®)VE e T :U|, = U'by + U?b, with U',U? € PX(E)},
5 ={U e L™, R*)VE € T : Uly = Usb" + U,b* with Uy, U, € P*(E)}.
Because ¢ € V,,U € Vy,V € V|, are polynomials on each grid element E, the condition @, U,V € L™ does not constitute an
additional constraint to the discrete functions. The function spaces Vy and V}, contain tangential vector fields, that is

U(x) € Tx(S) for U € Vy U V. For every momentum U € Vy the restriction U is a vector field having polynomial components
with respect to by and b,. Test functions for the momentum equation are to be vector fields U € V}, where their restriction U|;

has polynomial components with respect to the dual basis b' and b*.

Remark 1. The discrete function spaces Vy and Vj; for the tangential vector fields incorporating spherical triangular
coordinates ensure the two-dimensional representation of the momentum in (1). This denotes a reduction compared to the
three-dimensional representation in the Cartesian coordinate system used in [15,17]. Further, this approach avoids any kind
of projection step incorporating a discrete version of the Lagrangian multiplier in the numerical scheme.

3.3. Space-discrete formulation

The starting point for the space-discrete formulation is an approriate integral form of the conservation law. This is ob-
tained multiplying (1) with a smooth (continuous in S with derivatives) test function p = (¢, V)", assuming a smooth solu-

tion q of (1), integrating over E € 7 and applying (10), that is

/(p~©rq —f(q):Vsp)dX+/ p~f(q)~vEd6:/p-F(x,q)dx.
E oE E
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Here f(q) : Vsp =fo(q) - Vs + Zleef -fu(q) - Vs(V - e;) and vg is the normal unit vector outward on 9E. This integral form of
(1) is to be the condition that the space-discrete solution gy, (t) € V4 x Vy has to fulfill, that is

VpeVexV, VEeT

- . (4)
[ -2~ fan)  Vspidx+ [ pn-fteaf.aido = [ p-Fox.gydx.

By means of the discrete equation, gq; as well as the test functions p are in discrete function spaces. The function space V7, is
used for V instead of Vy to simplify the discrete representation (6) of (4). Further, due to the discontinuities of
g, = (®,U) = (@, ®u) along the edges of the triangles, the values of the flux function f(g;) are not defined on the boundaries
OE. That is why, in the boundary integral of (4), the flux f(q,) is replaced by the Rusanov numerical flux

Fete, g @2%) = 5 (@) + 5@ - vel) — afag™ )

with the maximum wave speed A = max(|u™ - vg| + \/ﬁ [ueUt . vg| + V@) in system (1). Below the notation fe = (f,,,,fU)T
regarding the scalar and momentum components will be used.

To obtain a matrix formulation of (4), the decomposition g, = (®,U) with & € V4 and U € Vy is regarded. Using the
decomposition (3) with regards to the Lagrange basis in E € 7 yields

Ne 2

Nk
D(x,0) =Y H(O)@i(x), Uxt)= Ui(6)@;(x)bi(x),
i=1

i=1 I=1

the representation of g, in E in terms of its component vector
~ 1 1 2 2 o ~
qh,E:(él’---sQDNkv U‘]a"'7UNk7 Ul,...,UNk), qh:(qh,E)EeT

As expected, the tangential momentum field U in E is represented by the last 2N, components of ¢, ¢ only. Then, gy, is a solu-
tion of (4) if and only if in every E € 7 for allj=1,...,N, and [ = 1,2 the following equations hold

N, dep; )
;E/E(PjQDidX—/Eftb(Qh)~Vs§0jdX+AE(p}-f¢d6:0, -
& dU! ) )

;W/EQDj(Pidx—/Effj'Vsqojdx+/65<p}f{,da:/qujF{,dx. 6)

Here the notation f = b'- fy(qy), fi, =b'-fu,F, =b'-Fy — 2 fimr!  F,, =b'-Fy,fim = b"- fy(g,) - b™ has been used. Using

mi»

the dual momentum space V7, for the test functions in (4) leads to the desirable separation of equations for the momentum

To proceed with the space-discrete system further below Eqgs. (5) and (6) are written in the compact form

% _ 1) )
with an appropriate right hand side operator L. The evaluation of L(g) includes the evaluation of integrals over E and oF
using the representation formulae (11). The integrands include both the flux function fin (1) and the surface geometry rep-
resented by Gram’s determinant g. In each triangle E quadrature rules of order 2k are applied given in [41,7,28,6]. On each
edge of E standard Gauss-Lobatto rules of order 2k — 1 are applied, since the electrostatic points are in fact Gauss-Lobatto
points along the edges, see [22]. Although [5] indicates, that quadrature rules of order 2k + 1 along the edges are to be used
for k + 1-order formal accuracy, this would slow down the scheme. Experiments with a strong DG method in [15] have
shown satisfactory results applying 2k — 1 order quadrature. Furthermore, we rely on the superconvergence property of out-
flow flux integrals described in [23] to motivate our use of 2k — 1 quadrature for the boundary integrals.

Remark 2. f‘E(x,qL“,qﬁ“t) is a function of space and the conserved variables only, that is f¢ is independent on the local
coordinate mapping Y. On the other hand, the formulations (5) and (6) depend on the coordinate mapping 7y because these

Remark 3. If the triangulation 7 is time independent, the mass matrix entries My = [ @;@;dx can be pre-evaluated once.
Thus, multiplying (5) and (6) by M~! leads to the substitution of ¢; and Vs@; by M,-;l(pj and M,-;’Vs(pj, respectively. The
resulting equations allow the evaluation of 9;G, avoiding any runtime mass matrix inversion.

3.4. Runge-Kutta method

A strong stability-preserving (SSP) explicit third-order Runge-Kutta (RK) method, see [19], is used to solve the ordinary
differential Eq. (7), that is for every time step t"* — "
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i—1
a9 =qp, q"=q%+1) cl@”), i=1,...s
=0

(8)
a =qY,
where s = 3,
11112
(€10, €20, €21, €30, C31,C32) = (1’§’Z’§’é’§)' 9)

SSP methods combine high-order accuracy with stability properties respecting a CFL-condition. For nonlinear scalar conser-
vation laws in one space-dimension [39] showed, that if the forward Euler method is total variation diminishing (TVD), then
(8) is TVD with an appropriate CFL-condition, too. Although this does not prove stability for (8) applied to (7), it gives a good
indication that this SSP method is not a source of spurious oscillations in the discrete solution.

For a given polynomial degree k in Section 3.2 a SSP method of order k + 1 would be desirable. Only a third-order method
(9) has been chosen, because SSP-RK methods with positive coefficients of order higher than four do not exist, see [36]. Fur-
ther, there is no 4-stage 4th-order SSP-RK method with non-negative coefficients, see [19]. All numerical experiments in Sec-
tion 4 show stable results even for k > 2.

4. Numerical results

The RK-DG method described in Section 3 has been used to implement an atmospheric model which has been validated
performing numerical experiments. The validation process is carried out in three steps. At first, standard model tests (flow
over an isolated mountain and a Rossby-Haurwitz wave) from Williamson [50] are performed. After that, a convergence
study considering steady-state and unsteady analytical solutions of the nonlinear SWE is done. Finally, a barotropic instabil-
ity in a localized jet stream has been carried out.

The experiments without a known analytical solution are validated with respect to their properties to conserve the global
invariants mass and energy. These are defined by

1 Up - Uy
d)do,E:—/ + (P, + 20p)do,
/s h h=2g | "y n(Pn 5)do,
respectively. As a consequence of the DG method (5), mass is expected to remain constant for each experiment. The relative
error of the discrete value E;, is computed with respect to the initial value, namely

|En — Eni_ol
Eh‘t:O

n(En) =

For the tests with an analytical solution q = (®gpq, cbanauana)T, the numerical error is evaluated using the normalized L*-error
of the geopotential field &y, that is
| Pana — (ph”Lz(S)
N =—5
| Pana HL2 (S)

For every element E a local grid resolution Axg which is the size of the largest edge in E, and a local model resolution hg is
defined by hg = /|E|/Nk. The grid resolution Ax and the model resolution h arise from the corresponding maximum values
over all elements. Table 1 contains h and the number of grid unknowns, depending on Ax and the polynomial order k.

For linear equations in one dimension, L*-stability is achieved respecting the CFL-condition

A1

Ax T 2k+1°
While [4] has proven this for k = 1, the general case k > 2 is based on numerical experiments, see [5]. For the presented
model, one possible generalization is of the type

At .
Jp—==CFL, At < Atgg = minAtg,

hE EeT
Table 1
The model resolution h (km)/number of grid unknowns are functions of the grid resolution Ax (km) (left vertical) and the polynomial order k (top horizontal)
Ax (km)/k 2 4 6 8
2058 174/17,920 137/28,800
1041 188/15,360 119/38,400 87/71,680 69/115,200

522 94/61,440 60/153,600 44/286,720

261 47/245,760 30/614,400
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where /g is the characteristic wave speed Az = |u| + v/®. The result of our numerical sensitivity experiments is CFL = 1. Rear-
ranging this condition in terms of Axg =~ /|E|/2 gives

Atg 1

" AR Dk D)

For the case k = 2, the right hand side of this condition yields ﬁ which agrees with Cockburns condition 1 very well. The
critical time step length At is derived in every time step, for given values hg and Ag. All numerical experiments, except Sec-
tion 4.4, have been performed with the time step At = Atcy. Due to accuracy limitations the smaller time step At = # is
used for the experiments in Section 4.4.

4.1. Isolated mountain test

The first test for the model validation is a quasi-standard test without a known analytical solution. Test 5 in [50] contains
a geostrophic balanced solid body rotation which is perturbed by an isolated mountain at 30° north. Rossby waves are gen-
erated and propagate to both hemispheres. Fig. 2 shows a snapshot of the geopotential height after an integration time of 15
days.

Due to the lack of an analytical solution, for this experiment the discrete properties of the global invariants mass and en-
ergy are inspected. The experiments for all model resolutions approve the conservation of mass up to machine precision.
Fig. 3 shows the relative error for the global energy #(E,) as a function of the model resolution h and simulation time T,
respectively. At day 15, the error values #(Ey,) are in the range of (7.7 x 107'°,4.8 x 107®), even for the coarse model reso-
lution of 180 km. For a fixed grid resolution Ax, a higher polynomial order k reduces the error. An error reduction is observed
as well for all fixed polynomial orders k < 6 and a decreasing grid spacing Ax (i.e., increasing grid resolution). For the high-
order case k = 8 the error remains almost constant which may be caused by the non smooth shape of the mountain. The time
evolution of the error #(Ey) is a monotone increasing function of time which is the anticipated characteristics.

Although the error sensitivity with respect to the model resolution describes the convergence properties, no information
about the computational costs is given. For that, Fig. 4 shows the relation between model resolution h and CPU time on a
single AMD Opteron machine. The dramatic h—> growth of CPU time is mainly caused by the strong time step limitation
due to the CFL condition. This could be improved, e.g. using semi-implicit time stepping to dampen the fast waves, see
[10,32]. Because this qualitative characteristics of CPU time is observed also for all the following experiments, this analysis
is presented for this test case only.

4.2. Rossby-Haurwitz wave

In test 6 of [50] a transient Rossby—-Haurwitz wave is described, which is an analytic solution of the nonlinear barotropic
vorticity equation on the sphere. The initial fields with a zonal wave number 4 move in the eastward direction. Although this
is not an analytic solution of the SWE, it has been used frequently for model validation. Fig. 5 shows a snapshot of the geo-
potential height after an integration time of 14 days.

The discrete conservation properties with respect to mass and energy are analyzed. As in Section 4.1, the expected con-
servation of mass is obtained up to machine precision. Fig. 6 shows the relative error for the global energy #(Ey,) as a function
of the model resolution h and simulation time T, respectively. Compared to Section 4.1, the values of #(Ey) reach higher val-
ues and range in (3.0 x 107%,3.7 x 107°). Nevertheless, the experimental convergence with respect to the polynomial order k
and to the grid resolution Ax is obtained.

5152 @ [gpm]
S 5500
TP 25520 %% 5888
»388 5704
5888 5520

5704
5520 5336
5152

5336
2

Latitude

180° 225° 270° 315° 0° 45° 90° 135° 180°
Longitude

Fig. 2. Section 4.1 (isolated mountain), geopotential height @, after 15 days, (h, k) = (30 km 4).
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Fig. 3. Section 4.1 (isolated mountain), relative error for global energy #(Ey), top: day 15 and k=2 (---), k=4 (-), k=6(--),k=8 (-), bottom:
(h, k) = (47 km,2) (---), (h,k) = (30 km,4) (-), (h, k) = (44 km,6)(-), (h, k) = (69 km,8) (-).
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Fig. 4. Section 4.1 (isolated mountain), CPU time in h for 15 days simulation, k =2 (---), k=4 (-), k= 6(-),k = 8 (-).

4.3. Steady-state solid body rotation

This test contains a steady-state solution of the nonlinear SWE, see [50, case 2]. The velocity field u is a westerly wind
with the meridional distribution of a solid body rotation. The geopotential height @ is given in geostrophic balance to u. Thus,
for the duration of the integration the initial data have to be maintained.
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Fig. 5. Section 4.2 (Rossby-Haurwitz wave), geopotential height @y, after 14 days, (h, k) = (30 km,4).
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Fig. 6. Section 4.2 (Rossby-Haurwitz wave), relative error for global energy #(Ey), top: day 14 and k=2 (---), k=4 (-), k =6(--),k = 8 (-), bottom:
(h,k) = (47 km,2) (---), (h,k) = (30 km,4) (=), (h, k) = (44 km,6)(--), (h, k) = (69 km.8) (-).

For the validation, [50] recommend the evaluation of the normalized L*-error #(®;,) after an integration time of 5 days.
Fig. 7 shows #(®y,) for different polynomial orders k = 2,4, 6, 8 as a function of the model resolution h. For all choices of k the
model converges and reduces the error almost up to machine precision for k = 6, 8. Table 2 shows the expected order of con-
vergence O(Ax*+!), see [26]. The same experimental order of convergence is obtained by spectral element methods, see
[11,18]. Further for fixed grid resolutions Ax, the errors decrease significantly for increasing k. These results are very close
to the convergence studies in [16,30,15]. For this steady-state solution no limitation due to the third-order RK method is
observable.
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Fig. 7. Section 4.3 (steady-state solid body rotation), normalized L?-error #(®y,) after integration time 5 days as a function of model resolution h,k = 2 (-- ),
k=4(-),k=6(-),k=8(-).

4.4. Unsteady solid body rotation

This test concerns an unsteady solution of the nonlinear SWE, see [24, example 3]. Similar to the last test, the velocity
field u is a solid body rotation, but with an inclination to the Earth’s rotation axis. The more complex geopotential field is
a superposition of two axially symmetric fields. Further, this test requires an axially symmetric orographic field. This ana-
lytical solution moves in the westerly direction and has a time period of 1 day.

Again, the normalized [*-error (&) is evaluated after an integration time of 5 days. In this Section the time step is cho-
sen as At = 24, which is different from all other numerical experiments in this article. Fig. 8 shows (&) for different poly-
nomial orders k =2,4,6,8 as a function of the model resolution h. For all choices of the polynomial order k the model
converges, even in this unsteady test case. The errors decrease significantly for increasing k.

For all experiments with small errors (17(®y,) < 10~°) the limiting factor for accuracy is the time step At and not the model
resolution h any more. To see this, Fig. 9 is given, which shows #(®y) as a function of At, for fixed parameters (h, k). All exper-

Table 2
Sections 4.3-4.5, Experimental order of convergence for k = 2,4,6,8
Test/k 2 4 6 8
Section 4.3 2.86 497 6.97 8.78
Section 4.4 3.02 5.02 4.83 4.20
Section 4.5 4.84 5.70 7.25 8.79
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106 3 .
107
108 4 e
/E 3 —
9 _e
@, 10 9 3 - - —
f=o E > L —
10-10 - L —
E L —
10-11 _; ° ~ e -
L
1012 e
-13 3
10 T T T T T T
30 60 90 120 150 180

mode! resolution h [km]

Fig. 8. Section 4.4 (unsteady solid body rotation), normalized L?-error 1(®n) after integration time 5 days as a function of model resolution h,k =2 (---),
k=4 (-), k=6(-),k=8(-).
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Fig. 9. Section 4.4 (unsteady solid body rotation), normalized L*-error #(®y,) after integration time 5 days as a function of time step At/Atc, (h, k) =
(60 km,4) (e =), (h,k) = (30 km,4) (4 -), (h,k) = (87 km,6) (e --), (h,k) = (44 km,6) (A --), (h,k) = (137 km,8) (e-), (h,k) = (69 km,8) (a-).

iments which are not plotted in Fig. 9 give the same results independent of the choice of At < Atqy. Itis to be seen, that n(®y)
stagnates for decreasing h, for fixed At = Atcr and all experiments with small errors. At the same time, for these experiments
Fig. 9 shows O(At?) convergence of #(®y,). Both observations together yield, once #(®y,) is small enough, only a decreasing
time step leads to decreasing 7(®y). A further error reduction is anticipated for time steps smaller than %, which is not
shown here due to limited computational resources. Of course this effect could be avoided using an appropriate RK method
of order k + 1. As explained in Section 3.4 a SSP-RK method with a tolerant CFL-condition is not available.

Table 2 shows for k = 2,4 the expected order of convergence O(Ax*+!). Because for k = 6, 8 the convergence is limited by
the third-order time step, in this case the convergence rates in space are suboptimal. At the same time the expected third-
order accuracy in time can be achieved. Because the absolute [?-error | Pana — Pnll2 © is larger compared to the similar stea-
dy-state case in Section 4.3, for the polynomial orders k = 2,4, 6 the normalized error is even smaller. The error for k = 8 is
limited by the time step, which results in slightly larger errors compared to Section 4.3.

4.5. Unsteady jet stream

This test contains a second unsteady solution of the nonlinear SWE, see [24, example 4]. This time, the velocity field u is an
axially symmetric westerly wind jet stream superimposed by a smaller solid body rotation, where the axis of the jet stream is
inclined to the Earth’s rotation axis. Due to the jet stream strong meridional gradients are present, which presents an addi-
tional difficulty compared to Section 4.4. As in Section 4.4, an adequate unsteady geopotential field is available and an axially
symmetric orographic field has to be regarded. The solution moves in the westerly direction and has a time period of 1 day.

The normalized L*-error #(®y) is evaluated after an integration time of 5 days. Fig. 10 shows the normalized L*-error
1(®y) for different polynomial orders k = 2,4, 6, 8 as a function of the model resolution h. The method shows experimental
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Fig. 10. Section 4.5 (unsteady jet stream), normalized L?-error n(®y) after integration time 5 days as a function of model resolution h,k =2 (---), k=4 (-),
k=6(—),k=8(-).
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convergence for this test case with strong meridional gradients. For increasing polynomial order k the error #(®y,) decreases,
but remains significantly larger than in Section 4.4. This is probably the reason for the order of convergence k + 1, see Table
2, without any limitation due to the third-order RK method in this unsteady solution. Due to the locality of the jet stream, the
9th-order experiment (k = 8) on a coarser grid resolves this test not as well as the 7th-order (k = 6) experiment which ex-
plains the crossing of both error lines.

4.6. Perturbed jet stream

Supplementing the standard tests for atmospheric models based on SWE, [12] proposed a test describing a barotropic
instability. The initial velocity field u is an axially symmetric westerly jet stream with the same axis as the Earth’s rotation
axis. As in Section 4.5, this jet stream includes strong meridional gradients and constitutes a rather local feature. Based on u a
geopotential height @ is derived in geostrophic balance to u. Additionally a small perturbation @, is added, such that the
initial condition for the test is the geopotential field ® + &,. As a consequence of the perturbation @,, this experiment should
not maintain the initial data. [12] give a detailed description of the barotropic instability developing within the jet stream
from day four to day six.

At first, the model should be able to maintain the geostrophically balanced flow, as long as the initial perturbation does
not lead to instabilities. Unlike for spectral models, this is not trivial for a model with a grid which is not aligned to the zonal
flow. Fig. 11 shows the vorticity field after 4 days in a cutout of the global model domain for k = 2 and two different model
resolutions. Whereas a pronounced zonal wavenumber five is visible for h = 94 km the experiment with the higher resolu-
tion h = 47 km reduces the grid effect considerably. The same plot after 4 days is given